• Home
  • About
  • Contact Us
  • Privacy Policy

Technic News

The Latest in Technology

  • New Technology
  • Cool Gadgets
  • Latest Tech & Gadgets
  • Tech & Gadget Reviews
  • Tech & Gadget News
  • Gadgets Shop

MIT’s newest computer vision algorithm identifies images down to the pixel

For humans, identifying items in a scene — whether that’s an avocado or an Aventador, a pile of mashed potatoes or an alien mothership — is as simple as looking at them. But for artificial intelligence and computer vision systems, developing a high-fidelity understanding of their surroundings takes a bit more effort. Well, a lot more effort. Around 800 hours of hand-labeling training images effort, if we’re being specific. To help machines better see the way people do, a team of researchers at MIT CSAIL in collaboration with Cornell University and Microsoft have developed STEGO, an algorithm able to identify images down to the individual pixel.

imagine looking around, but as a computer
MIT CSAIL

Normally, creating CV training data involves a human drawing boxes around specific objects within an image — say, a box around the dog sitting in a field of grass — and labeling those boxes with what’s inside (“dog”), so that the AI trained on it will be able to tell the dog from the grass. STEGO (Self-supervised Transformer with Energy-based Graph Optimization), conversely, uses a technique known as semantic segmentation, which applies a class label to each pixel in the image to give the AI a more accurate view of the world around it.

Whereas a labeled box would have the object plus other items in the surrounding pixels within the boxed-in boundary, semantic segmentation labels every pixel in the object, but only the pixels that comprise the object — you get just dog pixels, not dog pixels plus some grass too. It’s the machine learning equivalent of using the Smart Lasso in Photoshop versus the Rectangular Marquee tool.

The problem with this technique is one of scope. Conventional multi-shot supervised systems often demand thousands, if not hundreds of thousands, of labeled images with which to train the algorithm. Multiply that by the 65,536 individual pixels that make up even a single 256×256 image, all of which now need to be individually labeled as well, and the workload required quickly spirals into impossibility.

Instead, “STEGO looks for similar objects that appear throughout a dataset,” the CSAIL team wrote in a press release Thursday. “It then associates these similar objects together to construct a consistent view of the world across all of the images it learns from.”

“If you’re looking at oncological scans, the surface of planets, or high-resolution biological images, it’s hard to know what objects to look for without expert knowledge. In emerging domains, sometimes even human experts don’t know what the right objects should be,” MIT CSAIL PhD student, Microsoft Software Engineer, and the paper’s lead author Mark Hamilton said. “In these types of situations where you want to design a method to operate at the boundaries of science, you can’t rely on humans to figure it out before machines do.”

Trained on a wide variety of image domains — from home interiors to high altitude aerial shots — STEGO doubled the performance of previous semantic segmentation schemes, closely aligning with the image appraisals of the human control. What’s more, “when applied to driverless car datasets, STEGO successfully segmented out roads, people, and street signs with much higher resolution and granularity than previous systems. On images from space, the system broke down every single square foot of the surface of the Earth into roads, vegetation, and buildings,” the MIT CSAIL team wrote.

imagine looking around, but as a computer
MIT CSAIL

“In making a general tool for understanding potentially complicated data sets, we hope that this type of an algorithm can automate the scientific process of object discovery from images,” Hamilton said. “There’s a lot of different domains where human labeling would be prohibitively expensive, or humans simply don’t even know the specific structure, like in certain biological and astrophysical domains. We hope that future work enables application to a very broad scope of data sets. Since you don’t need any human labels, we can now start to apply ML tools more broadly.”

Despite its superior performance to the systems that came before it, STEGO does have limitations. For example, it can identify both pasta and grits as “food-stuffs” but doesn’t differentiate between them very well. It also gets confused by nonsensical images, such as a banana sitting on a phone receiver. Is this a food-stuff? Is this a pigeon? STEGO can’t tell. The team hopes to build a bit more flexibility into future iterations, allowing the system to identify objects under multiple classes.

Brought to you by USA Today Read the rest of the article here.

  • Facebook
  • Twitter
  • Pinterest

Filed Under: Tech & Gadget News

  • Email
  • Facebook
  • YouTube

www.sicherversichert.de

www.service-hotel-24.com

www.virtutea.com

www.my-fly.club 

www.1-2-holiday.com

www.women-fashion-online.com

www.amer.de

www.cupado.de

Recent Posts

  • Sources: the Broadcom-VMware deal happened within two weeks; Broadcom CEO had switched his focus to software amid regulatory headwinds for semiconductor deals (Financial Times) May 29, 2022
  • ‘Star Wars: Knights of the Old Republic II’ heads to Nintendo Switch on June 8th May 28, 2022
  • Interview with Ted Sarandos about Netflix’s recent share price plunge, backing Dave Chappelle’s latest comedy special, Hollywood schadenfreude, and more (Maureen Dowd/New York Times) May 28, 2022
  • Valve’s latest Steam Deck update promises less fan noise May 28, 2022
  • Some teens say French social networking app Yubo, which had 18M downloads in the US, ignored reports that the Uvalde shooter threatened violence on the app (Washington Post) May 28, 2022

Copyright © 2022 · Designed by Amaraq Websites

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.